Factorization in Polynomial Rings

ثبت نشده
چکیده

We begin with some basic definitions. Definition 1.1. Let f, g ∈ F [x]. We say that f divides g, written f ∣∣g, if there exists an h ∈ F [x] such that g = fh, i.e. g is a multiple of f . Thus, for example, every f ∈ F [x] divides the zero polynomial 0, but g is divisible by 0 ⇐⇒ g = 0. By definition, f is a unit ⇐⇒ f ∣∣1. Recall also that the group of units (F [x])∗ of the ring F [x] is F ∗, the group of units in the field F , and hence the group of nonzero elements of F under multiplication. Thus f divides every g ∈ F [x] ⇐⇒ f divides 1 ⇐⇒ f ∈ F ∗ is a nonzero constant polynomial. Finally note that, if c ∈ F ∗ is a unit, then f ∣∣g ⇐⇒ cf ∣∣g ⇐⇒ f ∣∣cg.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rings: an efficient Java/Scala library for polynomial rings

In this paper we brieƒy discuss Rings — an ecient lightweight library for univariate and multivariate polynomial arithmetic over arbitrary coecient rings. Basic algebra, GCDs and factorization of polynomials are implemented with the use of modern asymptotically fast algorithms. Rings provides a clean API for algebra and a fully typed hierarchy of mathematical structures. Scala API additionall...

متن کامل

OF MATHEMATICAL COMBINATORICS EDITED BY THE MADIS OF CHINESE ACADEMY OF SCIENCES December , 2011

In this paper, we present some elementary properties of neutrosophic rings. The structure of neutrosophic polynomial rings is also presented. We provide answers to the questions raised by Vasantha Kandasamy and Florentin Smarandache in [1] concerning principal ideals, prime ideals, factorization and Unique Factorization Domain in neutrosophic polynomial rings.

متن کامل

On the Ring Isomorphism & Automorphism Problems

We study the complexity of the isomorphism and automorphism problems for finite rings with unity. We show that both integer factorization and graph isomorphism reduce to the problem of counting automorphisms of rings. The problem is shown to be in the complexity class AM ∩ coAM and hence is not NP-complete unless the polynomial hierarchy collapses. Integer factorization also reduces to the prob...

متن کامل

Module MA3412: Integral Domains, Modules and Algebraic Integers

2 Integral Domains 12 2.1 Factorization in Integral Domains . . . . . . . . . . . . . . . . 12 2.2 Euclidean Domains . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Principal Ideal Domains . . . . . . . . . . . . . . . . . . . . . 16 2.4 Fermat’s Two Squares Theorem . . . . . . . . . . . . . . . . . 17 2.5 Maximal Ideals and Prime Ideals . . . . . . . . . . . . . . . . 20 2.6 Unique Fact...

متن کامل

New Bases for Polynomial-Based Spaces

Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...

متن کامل

On constant products of elements in skew polynomial rings

Let $R$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $R$ and $f(X)=a_0+a_1X+cdots+a_nX^n$ be a nonzero skew polynomial in $R[X;alpha]$. It is proved that if there exists a nonzero skew polynomial $g(X)=b_0+b_1X+cdots+b_mX^m$ in $R[X;alpha]$ such that $g(X)f(X)=c$ is a constant in $R$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $R$ such tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016